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Abstract: When considering magic squares (number grids with a constant sum for each
row, column and diagonal), rotations and reflections are considered trivial. Our
investigation uses the magic line (connecting each integer in sequence) to reveal
underlying homologies and to investigate whether magic squares that share magic line
patterns might also be considered trivial. We have written software (also used to create
artistic creative magic line visualisations and animations) to aid this process. The
mathematics is simple but magic square variations are deceptively complex and
overlapping. Simplification, using homologous patterns, is the subject of this paper.
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1 INTRODUCTION

The 880 magic squares of order four, originally outlined in 1693 by Frénicle and proved
by Friedrich Fitting (1862-1945) (see O’Connor, Robertson, 2014) were published by
Suzuki (2019), which provided our base data. These are the accepted group of unique
order four magic squares, excluding numerically ‘trivial’ rotations or reflections (D8
symmetries) from other squares. However, on considering the patterns formed by the
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magic line! it is apparent that many of these 880, share identical magic lines despite
differing arrangements of integers; these homologies appear in groups of two, four and
eight.

This led us to look at the connection between identical magic line patterns, and the
variations of integer relationships between them. Behind the ‘visual homologies’ are
various shifts within the number grid that preserve numerical order along the magic line.
Our argument is that magic line pattern homologies suggest possible new ‘trivial’ or
‘parent’ categories within the 880 unique squares. Existing ways of grouping magic
squares focus on numerical tranformations e.g. row and column swapping (Heinz, 2010;
Suzuki, 2019), but the magic line offers a diagram of relationships between the numbers
and their position within the grid.

2 METHOD

We made an initial sweep of the 880, using SVG (Scalable Vector Graphics) to draw the
magic line for each, so their lengths can be calculated programatically. There is a shortest
and longest path through any » x n magic square grid, which can be used to form groups
that share the same /ength of magic line, if not necessarily the same magic line pattern.
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Figure 1: The shortest and longest possible order 4 magic lines (a, b).

Some magic squares have unique magic line lengths (e.g. Fig. 1a) not shared with any
others — their magic line pattern could be considered ‘prime’ — but groups that share the
same length of magic line are the current focus of this research. Having written a method
of grouping magic lines of the same length, but without a computational method to
compare their differences, we confirmed ‘homology groups’ by visual analysis, resulting
in a (tentative, to be confirmed) reduced subset of 383 unique magic line patterns within
the original 880 magic squares. This subset, originally created for artistic purposes
(Everitt, Raczinski, 2020), contains only those with unique magic line patterns, providing

! Standard magic squares are normalised by starting with either 0 or 1; we have used 1, so the last point is 72
where 7 is the order of magic square. So in an order 4 square, the magic line joins integers sequentially from
1 to 16. We use the term ‘standard magic square’ to distinguish this from of other magic square sequences that
may not begin with 1, contain non-contiguous numbers, or square numbers, and other variations.



PATTERN HOMOLOGY IN MAGIC SQUARE PERMUTATIONS 147

a filter for deeper investigation. It also raised the question crucial to this research: Why
do so many of the 880 distinct magic squares share identical magic lines?

Unlike existing numerical groupings that transpose integers in the grid from an initial
square e.g. Suzuki’s row/column switches from a fundamental set 0£220 (2019), rules for
this pattern-based subset create immutable magic line patterns, despite shifts in the
integers. The resulting numerical transformations within these shared patterns are quite
distinct, and outlined below. Incidentally, D8 symmetries of the magic line, not the
number grid, were initially present in groups with shared magic lines drawn from the 880
set, but these are easily resolved and do not concern the ‘trivial’ numerical DS symmetries

of magic squares (example: Fig. 2).
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Figure 2: A group of 8 magic squares sharing a homologous magic line (a, b, ¢, d; e, f, g, h).

3 RESULTS

Significantly, on examining the number grids of magic squares with homologous magic
line patterns, certain numerical transformations appear. The key finding is that — because
the numbers are arranged along the magic line, and because the magic line is immutable
i.e. does not change form — the numbers generating numerically different magic squares
but sharing a magic line pattern are arranged in differing sequences that, crucially,
preserves the same relationships between each other along magic line. A more fine-
grained analysis shows that these “homologous pattern groups’ fall into sub-categories:

1. ‘Complementary’: where the numbers in the n x n matrix swap places from start
to end i.e. for a 4 x 4 magic square, 1, 2, 3... exchange places with 16, 15, 14...
etc. (Fig. 2a and 2b). This category is widely recognised numerically, yet not
connected to the magic line (see Danielsson, 2020).

2. ‘x-addition’: where x as certain factors of n are added to each number,
subtracting #n2 where the result exceeds n*2. The magic line retains the pattern
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but the starting point and subsequent integers are shifted along the line, e.g. for
4-addition the positions of 1,2,3,4...16 become occupied by 5,6,7,8...1 (e.g.
Figure 2c, 2d, 2e).

3. ‘Shift-reverse’: a combination of ‘complementary’ and ‘x-addition’, where the
number sequence is reversed, but also ‘shifted’ along the grid e.g. 1,2,3,4...15,
16 is replaced by 12,11,10,9....14,13 (e.g. Figure 2f, 2g, 2h)

4 DISCUSSION

Identifying groups of magic squares that display identical magic lines suggests a new way
of grouping magic squares by magic line pattern, or sequence of integers along the magic
line. These groups appear as new yet fundamental sets within magic square variations,
distinct from existing numerical transformations, although — in some cases — overlapping
existing row/column transformations; the crucial difference being that the primacy of the
magic line forms differing groups overall. They also apply to any order of magic square
above order 4. Pending further investigation, this approach may also server to simplify
the processing time needed to calculate the total variations for any given order.
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